0%

(2017) Single Image Deraining using Scale-Aware Multi-Stage Recurrent Network

Li R, Cheong L F, Tan R T. Single Image Deraining using Scale-Aware Multi-Stage Recurrent Network[J]. arXiv preprint arXiv:1712.06830, 2017.



1. Overview


现实生活中rain的两个显著特点

  • Rain streaks of various sizes and directions can overlap each other
  • Veiling effect



因此,论文提出Scale-aware Multi-stage CNN

  • parallel sub-network to deal with different rain streaks
  • veil module to deal with veiling effect
  • multi-stage to deal with rain streaks accumulation

(DenseNet能够提高效果)

  • DetailsNet
  • JORDER

  • Have not been subject to the full force of the tropical heavy rain.

  • Have not been tested where the scenes contain a range of depths.



2. Model


2.1. Rain Model



2.2. Framework

DenseNet结构去掉transition layer,不使用down-sampling.



  • Veil Module


训练集包含不同的A值。测试阶段将最亮的pixel设为A.

2.3. Loss Function





3. Experiments


3.1. 数据集

  • BSD300
    • rain size (area). small (0, 60], middle (60, 300], large (300, 600).
    • 3300 rain images containing 11 rain streak orientation.
  • NYU (depth information)
  • Rain12
    • 12 synthetic rain image with one type streak.
  • Rain12S
    • extension of Rain12. various sizes and densities of streak.
  • Rain100-COCO
    • rander different-sized streak on 100 images from COCO.
  • Rain12-Veil
    • rander streak and atmosphere veils. 12 images from BSD300.


3.2. 实验结果





3.3. Ablation Study